The Kidney

Role(s) in homeostasis

Learning Objectives

- 1. Summarize the functions and basic structure of the kidney
- 2. Identify the three processes of urine formation
- 3. Explain how each structure of the nephron contributes to water-salt balance

Learning Objectives

- 1. Summarize the functions and basic structure of the kidney
- 2. Identify the three processes of urine formation
- 3. Explain how each structure of the nephron contributes to water-salt balance

Functions of the Kidney

- **Remove waste** products from the body
- Maintain acid-base (pH) and water-salt balance
- Regulate blood pressure
- Promote production of red blood cells
- Activate vitamin D

Maintain **homeostasis** despite changes in endogenous production and dietary intake

Components of Homeostasis

Electrolytes - sodium, potassium, chloride Minerals - calcium, phosphorus, magnesium Water - (osmolality)

Acid-base - carbonic acid and bicarbonate

Waste material - urea (protein), creatinine (muscle), uric acid (nucleic acids)

Renal system

Input:

Circulation

Output:

- Circulation
- Urinary tract

Renal Clearance

$$C_{s} = \frac{U_{s} \times V}{P_{s}}$$

Input:

Circulation

Output:

- Circulation
- Urinary tract

- C_s Clearance of substance
- U_s Urine concentration of substance
- P_s Plasma concentration of substance
- V Urine flow rate

Kidney Structure

- Renal cortex outer layer that receives blood from the renal artery
- Renal medulla inner layer that consists of the renal pyramids
- Renal pelvis a central waste collection space that is continuous with the ureter

Nephron

Nephron - microscopic filtration unit of kidneys

- Filter blood and produce urine
- Several nephrons empty urine into one collecting duct
- The collecting ducts empty into the renal pelvis

Learning Objectives

- 1. Summarize the functions and basic structure of the kidney
- 2. Identify the three processes of urine formation
- 3. Explain how each structure of the nephron contributes to water-salt balance

Three processes of urine formation

Three processes of urine formation

Glomerular filtration

Glomerulus

fenestrated capillaries that

pass:

- Electrolytes
- Glucose
- Amino acids
- Water

basement membrane that

passes:

- (+) charged molecules
- Neutral charged molecules

Glomerular filtration

Glomerular

~ 180 L/day of **ultrafiltrate** produced; only 1–2 L of urine excreted/24 hours

(Bowman's) capsule Protein Other solutes Glomerular ultrafiltrate

Urine volume varies according to needs of body

Majority of ultrafiltrate undergoes tubular reabsorption

Afferent arteriole

Tubular reabsorption

- **Reabsorption** process by which water and salts are move from the nephron back into the blood
- Reabsorption decreases renal clearance

Tubular secretion

- Secretion is opposite of reabsorption substances are transported into tubule and excreted
- Reabsorption decreases renal clearance; secretion increases clearance

Three processes of urine formation

Learning Objectives

- 1. Summarize the functions and basic structure of the kidney
- 2. Identify the three processes of urine formation
- 3. Explain how each structure of the nephron contributes to water-salt balance

Kidneys regulate water-salt balance

Proximal convoluted tubule

- **Ultrafiltrate** is isosmotic to blood (~300 mOsm/L)
- Reabsorption of H₂O by osmosis cannot occur without **active transport** (AT) of Na⁺
- Loss of (+) charges causes Cl⁻ to passively follow
- Water then follows salt by osmosis

Proximal convoluted tubule

Ultrafiltrate is isosmotic to blood (~300 mOsm/L)

Reabsorption of H₂O by osmosis cannot occur without **active transport** (AT) of Na⁺

- Loss of (+) charges causes Cl⁻ to passively follow
- Water then follows salt by osmosis

Loop of Henle

Descending Limb Loop of Henle

- Is permeable to H₂O
- Is impermeable to, and does not actively transport, salt
- Deep regions of medulla are hypertonic
- H₂O diffuses out of filtrate into interstitial fluid
- H₂O is then collected by capillaries

Ascending Limb Loop of Henle

- Impermeable to H₂O, but permeable to salt
- thick walls provide active transport of salt out of filtrate
- AT of salt causes interstitial fluid to become hypertonic to ultrafiltrate

Distal convoluted tubule

Distal convoluted tubule

Primary function:

- **Secretion** from blood plasma to filtrate
- Secreted ions:
 - Potassium (K⁺)
 - Acid (H⁺)
- Reabsorption of water influenced by hormones
- Empties into collecting duct

Learning Objectives

- 1. Summarize the functions and basic structure of the kidney
- 2. Identify the three processes of urine formation
- 3. Explain how each structure of the nephron contributes to water-salt balance

Thank you!

Brandon Roberts, Ph.D. Email: blroberts@umass.edu

Supplemental Material

Kidneys and blood pressure

When blood volume (and, therefore, blood pressure) falls too low for filtration to occur, the juxtaglomerular apparatus can respond by secreting **renin**.

Renin

Renin - an enzyme that leads to the secretion of aldosterone by the adrenal glands.

Renin-angiotensin-aldosterone system (RAAS)

