Synaptic actions of FGF -1 in the arcuate nucleus of the hypothalamus and dorsal vagal complex

Brandon Roberts, Ph.D.

Paul Kievit Laboratory Oregon National Primate Research Center

Obesity

Obesity is a worldwide epidemic

Contributes to multiple top 10 global causes of death including:

- Heart disease
- Stroke
- Lower respiratory infections

Diabetes (~450 million people worldwide)

- Roughly 40% of adults in U.S. are obese
- 72% when including those overweight

Massachusetts 5th least obese state!

CDC 2017 WHO 2018 Flegal *JAMA* 2013 Ogden et al. 2014

Paucity of therapeutics

Conventional weight loss programs

 Less than 3% are at or below posttreatment weight 4-5 years after a successful weight-loss program

Bariatric Surgery

- Most effective
- Highly invasive
- Paired with conventional weight loss programs

Current Pharmaceuticals

- Adverse side-effects
- Low compliance rate
- Few effective options

Kramer 1989 Powell 2011 Service 2013 Wing R 2005

"It's easy- exercise and eat right."

Current attempts are not an effective long-term strategy

What causes obesity?

Long-term positive energy balance

What regulates food intake and energy metabolism?

Cui H 2005 Hazell T 2015 Hyun-Ju Kim 2011 Koch M 2014 Tschop M 2001

• Hypothalamus

Recent Projects

- Impact of postnatal overnutrition on neural development and central leptin signaling
- Drug discovery partnership
- Industry-academic collaboration to investigate the role of reelin in metabolic systems
- Central actions of fibroblast growth factor -1 (FGF1)

Fibroblast Growth Factor -1 (FGF1)

Member of FGF protein family (~17 kDa)

Involved in:

- Embryonic development
- Cell growth
- Tissue repair

Receptor binding

Tyrosine kinase receptors

Intracellular (c-jun N-terminal kinase; JNK)

Ubiquitous expression Knockouts are highly diabetic on HFD

Jonker JW, *Nature* 2012 Ornitz DM, *Rev Dev Bio* 2015 Liang G, *Kidney Int.* 2017

FGF1 reduces food intake in diabetic rodent models

db/db mouse model

db/db – leptin receptor mutation **ZDF** – leptin receptor mutation

Zucker diabetic rat (ZDF)

Tennant K, *Diabetes* 2019 Brown M, *Diabetes* 2019

FGF1 reduces blood glucose in DIO and diabetic mouse models

DIO – diet induced obese *db/db* – leptin receptor mutation **ZDF** – leptin receptor mutation

Tennant K, Diabetes 2019 Brown M, Diabetes 2019

25

FGF1 increases cFos and pERK1/2 in the ARC, median eminence, and in tanycytes

Tennant K et. al. 2019 Brown M et. al. 2019 Does FGF1 act directly on ARC-POMC or -NPY neurons and, if so, what are the potential mechanisms by which it acts?

Methodology

Coronal hypothalamic brain slice

- Preserves the arcuate nucleus
- Patch-clamp in the arcuate
 - Measure changes in currents and voltages

Transgenic mice

- Proopiomelanocortin (POMC) -EGFP
- Neuropeptide Y (NPY) -GFP

Methodology

Patch-clamp techniques:

Neuronal activity (Current Clamp)

Objectives

- 1) Does FGF1 alter the activity of ARC-POMC or -NPY neurons?
- 2) Does FGF1 alter neurotransmitter release?
- 3) What receptor mediates FGF1 signaling on these neurons?

FGF1 activates ARC-PO

FGF1 does not alter spontaneous excitatory inputs on ARC-POMC neurons

ECE1 docrosses spontaneous inhibitory inputs on

FGF1 activation of ARC-POMC-EGFP neurons is indirect

Tetrodotoxin (TTX) – Na⁺ channel blocker Bicuculline (BIC) - GABA_A receptor antagonist

FGF1 actions on ARC-PO

FGFR 1, 2, 3, 4 inhibitor

VEGFR

- Regulates tanycyte permeability (leptin transport)
- Tyrosine kinase with similar binding domains
- FGF impacts VEGF signaling and VEGFR expression
- FGF1 most promiscuous FGF

Summary

In the arcuate nucleus:

- FGF1 depolarized ARC-POMC, but not NPY neurons
- FGF1 decreases inhibitory inputs onto ARC-POMC neurons
- FGF1 activation of ARC-POMC neurons is indirect
- VEGF receptors are involved in FGF1 activation of ARC-POMC neurons

Does FGF1 have any actions in the hindbrain?

Role of dorsal vagal complex (DVC) in energy homeostasis

Dorsal vagal complex (DVC)

- Nucleus of the solitary tract (NTS)
- Area postrema (AP)
- Dorsal motor nucleus of the vagus (DMV)

Dorsal vagal complex (DVC) controls glucoprivic feeding

Glucoreceptors Controlling Feeding and Blood Glucose: Location in the Hindbrain

FIG. 6. Food intake of area postrema-nucleus of solitary tract (AP-NTS)-lesioned rats and controls during 6-h tests after subcutaneous injection of 2-deoxy-D-glucose (2-DG, 100 and 200 mg/kg) and NaCl (0.9%, mean of 4 tests). Rats were maintained and tested on mediumfat, high-carbohydrate powdered diet. * P < 0.001, lesion vs. control for same 2-DG dose; ° P < 0.004, control 2-DG vs. NaCl.

Ritter RC, *Science* 1981 Ritter S, *AJP* 1990

Dorsal vagal complex (DVC) controls feeding and blood glucose

Dorsal vagal complex (DVC) controls ARC nutrient sensing

- Lactate infusion into medial basal hypothalamus (MBH) decreases hepatic glucose production
- NMDA receptor antagonist in DVC blocks this effect
- Same result for dominant negative AMPK adenovirus injections into MBH

ICV FGF1 injection induces cFos in the DVC

- FGF1 effects are direct
- Mediated by FGF and VEGF receptors

FGF1 activates unidentified neurons in the area postrema

Summary

In the dorsal vagal complex (DVC):

- FGF1 has direct actions on NTS-NPY neurons
- FGF1 actions on NTS-NPY neurons are mediated FGF and VEGF receptors
- FGF1 activates unidentified neurons in the area postrema

Implications

- FGF1 electrophysiological actions in ARC consistent with proposed glia/astrocyte mediated mechanisms
- cFos expression and direct electrophysiological actions on NTS/AP neurons consistent with DVC control of glucoregulation and food intake

Do FGF1 central actions on food intake and blood glucose require peripheral vagal innervation from the DVC?

Acknowledgements

Paul Kievit Lab

- Rene Lindsley
- Katherine Tennant
- Eric Kim

Martin Kelley

Animal Technician Staff

Ilia Karatsoreos

Questions?

FGF1 effects may be mediated by voltage gated sodium channels (VGSC)

Andrikopoulos P. J Bio Chem 2011 (unpublished data)

