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Cellular/Molecular

Serotonin Activates Catecholamine Neurons in the Solitary
Tract Nucleus by Increasing Spontaneous Glutamate Inputs

Ran Ji Cui,* Brandon L. Roberts,* Huan Zhao, Mingyan Zhu, and Suzanne M. Appleyard
Program in Neuroscience, Department of Veterinary Comparative Anatomy, Physiology and Pharmacology, Washington State University, Pullman,
Washington 99164

Serotonin (5-HT) is a critical neurotransmitter in the control of autonomic functions. 5-HT; receptors participate in vagal afferent
feedback to decrease food intake and regulate cardiovascular reflexes; however, the phenotype of the solitary tract nucleus (NTS) neurons
involved is not known. A, /C, catecholamine (CA) neurons in the NTS are directly activated by visceral afferents and are important for the
control of food intake and cardiovascular function, making them good candidates to respond to and mediate the effects of serotonin at the
level of the NTS. This study examines serotonin’s effects on NTS-CA neurons using patch-clamp techniques and transgenic mice express-
ing an enhanced green fluorescent protein driven by the tyrosine hydroxylase (TH) promoter (TH-EGFP) to identify catecholamine
neurons. Serotonin increased the frequency of spontaneous glutamate excitatory postsynaptic currents (SEPSCs) in >90% of NTS-TH-
EGFP neurons, an effect blocked by the 5-HT; receptor antagonist ondansetron and mimicked by the 5-HT, receptor agonists SR5227 and
mCPBG. In contrast, 5-HT; receptor agonists increased sEPSCs on a minority (<30%) of non-TH neurons. 5-HT; receptor agonists
increased the frequency, but not the amplitude, of mini-EPSCs, suggesting that their actions are presynaptic. 5-HT; receptor agonists
increased the firing rate of TH-EGFP neurons, an effect dependent on the increased spontaneous glutamate inputs as it was blocked by the
ionotropic glutamate antagonist NBQX, but independent of visceral afferent activation. These results demonstrate a cellular mechanism
by which serotonin activates NTS-TH neurons and suggest a pathway by which it can increase catecholamine release in target regions to

modulate food intake, motivation, stress, and cardiovascular function.

Introduction

Serotonin (5-HT) is a neurotransmitter that influences a broad
range of physiological processes and behaviors, including pain,
mood, cardiovascular function, and food intake. Serotonin has
extensive effects throughout the CNS; however, an important site
of action for the regulation of cardiovascular function and food
intake is the nucleus of the solitary tract (NTS) (Merahi et al.,
1992; Raul, 2003; Hayes and Covasa, 2006b; Lam et al., 2009). The
NTS is the primary site through which visceral afferent informa-
tion enters the brain and activates second order neurons via glu-
tamatergic synapses (Andresen and Kunze, 1994; Saper, 2002;
Berthoud, 2008; Grill and Hayes, 2009). Many types of serotonin
receptors are expressed in the NTS, including the 5-HT; receptor
(5-HT5R) subtype, which are expressed on vagal afferent termi-
nals (Pratt and Bowery, 1989; Leslie et al., 1990; Merahi et al.,
1992; Huang et al., 2004) where they have been shown to modu-
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late glutamate release (Glaum et al., 1992; Wan and Browning,
2008; Takenaka et al., 2011). Activation of 5-HT;Rs in the NTS
contributes both to termination of a meal (Hayes and Covasa,
2006a), severe anorexia (Wu et al., 2012), and cardiovascular
reflexes (Jeggo et al., 2005; Jordan, 2005; Weissheimer and
Machado, 2007; Ramage and Villalon, 2008), but the phenotype
of the NTS neurons regulated by serotonin is not known.

A,/C, catecholamine neurons in the NTS (NTS-CA neurons)
are important for the control of many behaviors influenced by
serotonin, as interfering with the function of NTS-CA neurons
affects food intake, cardiovascular reflexes, and reward (Simon et
al., 1985; Kubo et al., 1990; Itoh and Bunag, 1993; Olson et al.,
2006; Rinaman, 2011). Ingestion of a meal, gastric distention, and
anorexigens (Monnikes et al., 1997; Willing and Berthoud, 1997;
Rinaman et al., 1998; Blevins et al., 2008; Williams et al., 2008;
Lam et al., 2009) all increase c-fos expression in NTS-CA neu-
rons, as do changes in blood pressure (Chan and Sawchenko,
1998), noxious stimuli (Jin et al., 1994), immune challenge (La-
croix and Rivest, 1997), and opioid withdrawal (Laorden et al.,
2000). NTS-CA neurons project to numerous brain regions, in-
cluding the hypothalamus, amygdala, nucleus accumbens, and
brainstem nuclei (Sawchenko and Swanson, 1981; Riche et al.,
1990; Wang et al., 1992; Petrov et al., 1993; Ueta et al., 2000; Reyes
and Van Bockstaele, 2006; Travagli et al., 2006; Balcita-Pedicino
and Rinaman, 2007), and release of catecholamines at these sites
affects a broad number of behaviors, including food intake, re-
ward, stress, and cardiovascular function (Leibowitz et al., 1988;
Cole and Sawchenko, 2002; Smith and Aston-Jones, 2008).
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Therefore, one potential mechanism by which serotonin could
alter these behaviors is by increasing the activity of NTS-CA
neurons.

We have previously demonstrated that NTS-CA neurons are
second order neurons that receive direct glutamatergic inputs
from visceral afferent fibers, resulting in large-amplitude EPSCs
that almost always elicit action potentials at afferent firing fre-
quencies <5 Hz (Appleyard et al., 2007). NTS-CA neurons also
receive spontaneous (action potential-independent) glutamate
inputs whose frequency can be modulated to impact their basal
firing rate (Cui et al., 2011). The goal of these studies is to deter-
mine what effect serotonin has on NTS-CA neuronal activity and
the underlying mechanism(s) involved.

Materials and Methods

NTS slices. Hindbrains of both male and female TH-EGFP mice (620
weeks old) were prepared as described previously (Appleyard et al.,
2007). All animal procedures were conducted with the approval of the
Animal Care and Use Committees at Washington State University (Pull-
man, WA) and in accordance with the U.S. Public Health Service Policy
on Humane Care and Use of Laboratory Animals (PHS Policy) and the
National Institutes of Health Guide for the Care and Use of Laboratory
Animals (NIH Guide). The hindbrain was removed and placed for 1 min
in cold (0—4°C) artificial cerebral spinal fluid composed of (in mm): 125
NaCl, 3 KCl, 1.2 KH,PO,, 1.2 MgSO,, 25 NaHCOj, 10 dextrose, 2 CaCl,,
and bubbled with 95%0,/5%CO,. The osmolarity was adjusted to 301—
305 mOsm using dextrose. The medulla was trimmed to a 2 cm block
(rostral-caudal) centered on the obex. A wedge of tissue was removed
from the ventral surface to align the solitary tract (ST) with the cutting
plane when mounted in a vibrating microtome (Leica VT-1000S). Slices
(250 pum thick) cut with a sapphire knife (Delaware Diamond Knives)
contained the ST in the same plane as the NTS. Slices were submerged in
a perfusion chamber and all recordings were performed at 31-35°C and
pH 7.4. Neurons were visualized using an upright microscope (Olympus
BX51). Recording electrodes were filled with a solution (in mm): 10 NaCl,
130 K gluconate, 11 EGTA, 1 CaCl,, 2 MgCl, 10 HEPES, 2 NaATP, 0.2
NaGTP, pH 7.3, 297-301 mOsm. Neurons were recorded from NTS
within 200 wm rostral or caudal from obex and medial to the ST-medial
NTS. Patch electrodes, 3—5 M(), were guided to neurons using differen-
tial interference contrast (DIC) optics illuminated with infrared light
(Olympus B51). Voltage-clamp recordings were made with an Axopatch
700B (Molecular Devices), Digidata 1440A digitizer (Molecular De-
vices), and pClamp 10 software (Molecular Devices). Only neurons with
holding currents not exceeding 100 pA at V;= —60 mV for the 15 min
control period (input resistance >150 M()) were studied further. Series
resistance was monitored throughout the recordings, and neurons were
not included in further analysis if it exceeded 20 M) or drifted >25%.
Series resistance did not differ between control (ACSF) and treatment.
Synaptic currents were evoked with an ultrafine concentric bipolar stim-
ulating electrode (50 wm inner diameter; Frederick Haer Company)
placed on the ST 1-3 mm from the recording electrode. Electrical stimuli
were delivered from an isolated programmable stimulator (ISO-Flex
stimulator with Master-8, A.M.P.1.) triggered to deliver a burst of stimuli
(5-50 Hz). Current-clamp recordings were made at resting membrane
potentials, and current injections were not used to hold the membrane at
set potentials. All membrane potentials reported were corrected for junc-
tion potential (14 mV). All drugs were obtained from Tocris Cookson or
Sigma.

Statistics. All data are presented as averages = SEM. Statistical com-
parisons of drug effects between groups (e.g., non-catecholamine and
catecholamine) were made using one-way ANOVA with Tukey’s or Bon-
ferroni post hoc analysis and Fisher’s exact test where appropriate (see
Results; Mintab 16, GraphPad). The Kolmogorov—Smirnov test (KS test)
was used to determine the significance of the drug effect for individual
neurons when analyzing the sEPSC and miniature EPSC (mEPSC) data
(mini analysis, Synaptosoft). p < 0.05 indicated significant differences.
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Results

Serotonin increases frequency of spontaneous glutamate
inputs onto TH-EGFP neurons

All TH-EGFP neurons were easily visualized and identified for
recordings (Figure 1A). We have previously shown a >88% co-
localization of EGFP with TH in the medial and caudal NTS of
these mice (Appleyard et al., 2007; Cui et al., 2011). As reported
previously (Appleyard et al., 2007) we found that 90% of the
TH-EGFP neurons studied were directly activated by ST affer-
ents, making them second order neurons. Application of 30 um
serotonin increased the frequency of spontaneous EPSCs in all
TH-EGEP neurons tested (Fig. 1 B, C,D; p < 0.05, KS test, n = 6).
The basal frequency of sEPSCs in TH-EGFP neurons was vari-
able, ranging from 0.2 to 12.5 Hz, as was previously reported (Cui
et al., 2011), suggesting that these neurons receive varying levels
of basal glutamate tone, at least in the horizontal slice. Bath ap-
plication of serotonin increased the frequency of sEPSCs from
1.9 + 0.63 Hz in control (ACSF) to 10.56 = 2.45 Hz (5-HT) (n =
6). The effects of serotonin were reversed after a 5 min wash
(ACSF) (Fig. 1F, n = 4). Serotonin did not significantly change
the average amplitude of sEPSCs (Figure 1E). On average, sero-
tonin did not significantly effect sSEPSC frequency at concentra-
tions of 1 uM (239 = 78%,n =5),3 uM (214 = 96%, n = 6), and
10 uM (347 = 193%, n = 5), but significantly increased sEPSC
frequency at 30 um (936 = 553%, n = 6; p < 0.05, one-way
ANOVA) (Fig. 1G). The calculated EC5,was 11 uMm. Interestingly,
serotonin significantly inhibited sEPSC frequency in 2 of 5 neu-
rons (p < 0.05, KS test) at 1 uMm and 2 of 6 neurons at 3 um (Fig.
1G). No significant inhibition was seen at higher doses.

5-HT;R agonists mimic the effect of serotonin on sEPSCs in
TH-EGFP neurons

To begin to determine which receptor subtype mediates the ef-
fects of serotonin, we tested agonists specific for the 5-HT;R.
Application of the 5-HT;R agonist SR57227 (10 uM) increased
the frequency of sEPSCs in 10 of 11 TH-EGFP neurons tested
(Fig. 2 A,B,D; p < 0.05, KS test). On average, SR57227 increased
the frequency of sSEPSCs from 3.3 = 0.7 to 11.5 *= 2.4 Hz,a 331 =
46% increase over control (Fig. 2 D, n = 11; p < 0.05, one-way
ANOVA). This effect was reversed by a 10 min wash (ACSF), with
the frequency of SEPSCs decreasing back to 3.6 = 0.6 Hz or 114 =
0.2% of control (Fig. 2 A, B). The effects of SR57227 were concen-
tration dependent, with no significant effect seen at the lower
dosesof 1 um (120 £ 17%, n = 4) and 3 um (124.6 = 29.7%, n =
6) and a significant increase at both 10 and 30 uM (331 = 46 and
280 * 53%, n = 4 and 6, respectively; p < 0.05, one-way
ANOVA) (Fig. 2C). SR57227 at 6 uM significantly increased
sEPSC frequency compared to ACSF (136 * 13%, n = 5), but the
effect was not significantly different from the other doses, mean-
ing it has an intermediate effect. The calculated ECs,, for SR57227
was ~7 M.

We next tested the effect of another 5-HT;R agonist,
m-chlorophenylbiguanide (mCPBG), on glutamate inputs onto
TH-EGFP neurons. mCPBG (30 uMm) also increased the fre-
quency of sSEPSCs in TH-EGFP neurons from 5.2 * 0.7 to 30.6 =
9.6 Hz or 594 * 191% increase (Fig. 2D, n = 11; p < 0.05,
one-way ANOVA). A 10 min wash (ACSF) of mCPBGs partially
reversed this effect, with the frequency of sEPSCs reduced to
18.1 = 6.5 Hz or 411 * 144% of control (n = 8; p < 0.05,
one-way ANOVA).
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Figure 1. Serotonin increases the frequency of spontaneous glutamate EPSCs in TH-EGFP

neurons. A, Visualization of NTS brain slice taken from a TH-EGFP mouse using DIC (left) and
fluorescence (right). Scale bars, 1 mu. B, Representative (single) traces from a NTS TH-EGFP
neurons during control (ACSF) and following bath application of 30 wum serotonin. V,, = —60
mV. C, Average frequency over time, binned into 10 s periods, from a TH-EGFP neuron treated
with serotonin. D, E, Cumulative fraction of interevent interval (D) and amplitudes (E) during
baseline (control) and serotonin treatment in a TH-EGFP neuron. F, Average effect of serotonin
on frequency of SEPSCs in TH-EGFP neurons (n = 6). G, Dose—response curve for serotonin.
Error bars indicate SEM, *p << 0.05, one-way ANOVA.
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5-HT;R antagonists block the effect of serotonin on sEPSCs in
TH-EGFP neurons

To confirm the role of the 5-HT;R, we next determined whether
the 5-HT5R antagonist ondansetron (ODN, 0.5 um) blocked the
effects of serotonin, SR57227, and mCPBG. ODN alone did not
change the frequency of sEPSCs [control = 3.4 = 0.8 Hz; ODN =
3.4 *= 0.88 Hz; 99.8 £ 8.9% of control (ACSF)] (Fig. 2B,D, n =
11). However, ODN blocked the effects of serotonin to increase
sEPSC frequency and actually revealed an inhibitory effect of
serotonin on sEPSC frequency, presumably mediated by another
serotonin receptor (ODN+ 5-HT = 54.0 £ 8.2% of ODN alone,
n =5). ODN also blocked the increase in SEPSC frequency stim-
ulated by the 5-HT;R agonists SR57227 and mCPBG (Fig. 2D;
SR57227 + ODN = 88.1 = 10.4% of ODN alone, n = 7; and
mCPBG + ODN = 101.3 = 9.0% of ODN alone, n = 5; p < 0.05,
one-way ANOVA).

Presynaptic actions of a 5-HT;R agonist on

NTS-TH-EGFP neurons

To determine whether the actions of the 5-HT;R agonists are
through presynaptic or postsynaptic mechanisms, we examined
miniature EPSCs in the presence of 2 um TTX to block action
potentials (APs) (Fig. 3). The voltage was held at —60 mV, the
approximate equilibrium potential for chloride, to isolate gluta-
matergic mEPSCs. In the presence of TTX, 30 uM mCPBG sig-
nificantly decreased the interevent interval (i.e., increased the
frequency of sSEPSCs) in all neurons tested (p < 0.05, KS test, n =
5) with an average frequency of 3.16 = 0.58 Hz in TTX only to
18.2 + 8.3 Hzin TTX plus mCPBG (# = 5), an average increase of
697 = 334% (Figure 3A,B,D, p < 0.05 Student’s ¢ test). In con-
trast, nCPBG had no consistent effect on mEPSC amplitude (Fig.
3CE TTX only = —44.9 = 3.8 pA; TTX plus mCPBG = —42.3 +
4.3 pA). TTX did not have a significant effect on baseline EPSC
frequency or baseline amplitude (Fig. 3D,E).

5-HT;R agonists affect less than one third of TH-EGFP
negative NTS neurons

To determine whether activation of 5-HT;Rs increased gluta-
mate inputs onto all NTS neurons, we tested the effect of SR57227
(10 wm) on sEPSCs in non-TH-EGFP neurons and found that
only 2 of 9 neurons responded with a significant increase (p <
0.05, KS test), with SR57227 increasing the sEPSC frequency to
110 and 160% compared to control (Fig. 4A). This is a signifi-
cantly lower response rate than the 10 of 11 TH-EGFP neurons
that responded to SR57227 (p < 0.01, Fishers exact test). mCPBG
also only increased the basal frequency of SEPSCs in 2 of 6 non-
EGFP neurons (p < 0.05, KS test), compared to 7 of 9 TH-EGFP
neurons (Fig. 4B).

MK212 and mCPP have mixed effects on sEPSC in TH-

EGFP neurons

mCPP, a non-specific serotonin receptor agonist, has been
shown to activate c-fos in a subpopulation of TH positive NTS
neurons in vivo (Lam et al., 2009). We therefore wanted to deter-
mine whether mCPP and MK212, a more selective 5-HT,R ag-
onist, would also activate these neurons in vitro. mCPP (10 uM)
increased the frequency of sEPSCs in 3 of 5 TH-EGFP neurons
(p < 0.05, KS test). The size of the increase was smaller than the
average effect of SR57227 (average mCPP response = 147 *
11%, n = 3; average SR57227 response = 331 = 46%, n = 9).
Application of MK212 (10 uMm), a 5-HT,R agonist, also slightly
increased the frequency of sEPSCs in 2 of 6 TH-EGFP neurons
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crease in firing was due to the increased
frequency of spontaneous glutamate in-
puts, we tested whether NBQX, an
AMPA receptor antagonist, blocked the
effect of SR57227 on firing rate. Bath
application of NBQX blocked the ability
of SR57227 to increase AP firing rate in
TH-EGFP neurons [Fig. 5C, n = 6; con-
trol (ACSF), 1.8 = 0.8 Hz; NBQX, 1.8 =+
0.8 Hz; NBQX + SR, 1.8 = 1.1 Hz].

40pA|

10 sec

5-HT;R agonists decrease the
amplitude of solitary

tract-evoked EPSCs

A major source of glutamate in the NTS is
the solitary tract afferent fibers. We there-
fore examined whether 5-HT;R agonists
had any effect on the ability of the incom-
ing visceral afferents in the ST to activate
TH-EGFP neurons. Our horizontal brain
slice preparation preserves a lengthy seg-
ment of the ST in the same plane as the cell
bodies of NTS (Fig. 1A). This allows place-
ment of the stimulating electrode on the vis-
ible ST at a sufficient distance from the
recording area to allow activation of the ST
with minimal focal activation of local gluta-
mate neurons (Bailey et al., 2008). Brief
shocks (100 ws duration) passed through
the stimulating electrode evoked EPSCs
(ST-EPSCs) in TH-EGFP neurons. As we
have described previously, ST-EPSCs in
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Figure 2.

indicate SEM.

(p < 0.05, KS test) but caused a significant decrease in the fre-
quency of sSEPSCs in 3 of 6 neurons (p < 0.05, KS test).

SR57227 increases the action potential firing rate of
TH-EGFP neurons

We have reported previously that altering spontaneous gluta-
mate inputs onto NTS-TH-EGFP neurons alters their firing
rate (Cui et al., 2011). We therefore wanted to determine
whether activation of the 5-HT;R would increase action po-
tential firing rate of NTS-TH-EGFP neurons, as SR57227 in-
creased the frequency of sEPSCs. Application of 10 um
SR57227 increased the AP firing rate of TH-EGFP neurons
from 2.0 = 1.0 to 3.8 = 1.6 Hz in 7 of 8 neurons tested (p <
0.05, KS test), with an average increase of 254.4 = 57.2% (Fig.
5A, B, n = 7, p < 0.05, Student’s ¢ test). The average resting
membrane potential was —60mV. To test whether this in-

. —
S

The effects of serotonin on spontaneous glutamate EPSCs in TH-EGFP neurons are mediated by the 5-HT; receptor. 4,
Single representative traces from a NTS TH-EGFP neuron during control (ACSF) and following bath application of the 5-HT receptor
agonist SR57227. B, Average frequency over time, binned into 10 s periods, from a TH-EGFP neuron treated with 10 v SR57227
(SR) with and without pretreatment with the 5-HT, receptor antagonist ondansetron (OND) (0.5 tm). €, Concentration response
curve showing fold increase in SEPSC frequency following a 10 min exposure to SR57227. *p << 0.05 compared to ACSF only; *p <
0.05 compared to ACSF, T and 3 wm (one-way ANOVA). D, Bar graph showing the average fold change in SEPSC frequency
stimulated by 5-HT; receptor agonists in NTS TH-EGFP neurons with and without pretreatment of ondansetron. *p << 0.05 denotes
a significant increase; # p << 0.05 denotes a significant decrease in frequency compared to ACSF (one-way ANOVA). Error bars

the TH-EGFP neurons had nearly in-
3 62\ variant latencies, few failures, and
$) frequency-dependent amplitude depres-
sion (Appleyard et al., 2007). As has also
been previously reported (Appleyard et
al., 2007) some of these ST-EPSCs were
compound EPSCs comprised of EPSCs
evoked by several individual ST inputs.
Bath application of 10 uM SR57227 signif-
icantly inhibited the amplitude of the ST-
EPSC in all neurons tested (Fig. 6A,B),
from —460.5 * 75.5 pA in ACSF to
—257.8 £ 53.0 pA in SR57227, an effect
reversed by ondansetron to —384.3 *
73.5 pA (Figure 6A,B) (p < 0.05, Stu-
dent’s t test) (n = 12). The range of inhibition was from 10.7 to
96.4% of control. Pretreatment with 0.5 uM ondansetron also
blocked the effects of SR57227 (control = —445.2 *= 116.2 pA vs
OND = —450.6 = 94.9 pA, OND + SR57227 = —425.0 = 128.4
pA) but had no effect alone on ST-EPSC amplitude (Fig. 6A,B,
n = 5). SR57227 also significantly increased the paired-pulse
ratio (PPR; EPSC2 amplitude/EPSC1 amplitude when two
shocks were applied 20 ms apart), consistent with SR57227 hav-
ing a presynaptic mechanism of action (PPR in control = 0.58 *
0.04, SR57227 = 0.88 £ 0.12, wash = 0.63 * 0.03; Figure 6 A,C,
n = 10; p = 0.05, Student’s t-test). The effect of SR57227 on PPR
was blocked by pretreatment of ondansetron. (Control = 0.70 =
0.06, OND alone = 0.71 = 0.08, OND + SR57227 = 0.70 * 0.06,
wash = 0.74 = 0.07 (Fig. 6A,C) (n = 5). Given that SR57227
increases the firing rate of the TH-EGFP neurons despite the
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Figure3.  The 5-HT, receptor agonist mCPBG increase the frequency, but not the amplitude,

of miniature EPSCs. 4, Representative traces in the presence of TTX during control (ACSF+TTX)
and following bath application of the 5-HT, receptor agonist mCPBG (TTX+ m(PBG) in a TH-
EGFP neuron. B, ¢, Cumulative fraction of inter-vent interval (B) and amplitudes (€) of mEPSCs
in control and in 30 M mCPBG in the presence of TTX from a representative TH-EGFP neuron. D,
Graph showing the average frequency of mEPSCs in control conditions, TTX only and
TTX+mGPBG. E, Graph showing the average amplitude of mEPSCs in control conditions, TTX
only and TTX+mGPBG (n = 5) *p << 0.05, one-way ANOVA.

inhibition of the ST-EPSC inputs, it suggests that the overall ef-
fect of SR57227 is to excite NTS-TH neurons.

Discussion

Catecholamine neurons in the NTS are proposed to be important
for the control of food intake (Monnikes et al., 1997; Willing and
Berthoud, 1997; Rinaman et al., 1998), reward (Smith and Aston-
Jones, 2008; Kenny, 2011), stress responses (Schiltz and Saw-
chenko, 2007), cardiovascular reflexes (Simon et al., 1985; Kubo
et al., 1990; Itoh and Bunag, 1993), and other homeostatic func-
tions (Hollis et al., 2004; Ulrich-Lai and Herman, 2009). Yet little
is known about how serotonin, a crucial transmitter in the con-
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trol of these functions, modulates these neurons. Here we report
five key new findings. First, serotonin increases the excitatory
glutamate tone onto NTS-TH neurons through activation of
5-HT;Rs. Second, 5-HT;R agonists mimic this effect in a
concentration-dependent manner through a presynaptic mecha-
nism to increase glutamate release. Third, this surge in glutamate
release increases the firing rate of NTS-TH neurons, an effect
blocked by the glutamate receptor antagonist NBQX. Fourth this
activation does not require activation of the solitary tract. Fifth,
5-HT;R agonists preferentially modulate NTS-TH neurons com-
pared to non-TH NTS neurons.

Serotonin increases the frequency of glutamate inputs onto
NTS-TH neurons through activation of presynaptic 5-HT;Rs
5-HT;Rs are expressed on sensory afferent terminals (Pratt and
Bowery, 1989; Leslie et al., 1990; Huang et al., 2004), as well as
terminals in close proximity to catecholamine neurons (Pickel et
al., 1984). Here we show that serotonin dramatically increases
spontaneous glutamate EPSCs onto NTS-TH neurons through
activation of 5-HT;Rs, as the effect is completely blocked by the
5-HT;R antagonist ondansetron and mimicked by the 5-HT;R
agonists mCPBG and SR57227. The effects of both 5-HT and
SR57227 are concentration dependent, with very steep relation-
ships consistent with a cooperative binding relationship (Barnes
et al., 1992). This demonstrates for the first time that serotonin
increases the basal excitatory glutamate tone onto NTS-CA neu-
rons. Our data support a presynaptic mechanism of action, as
5-HT;R agonists increase the frequency but not the amplitude of
mEPCS and have no discernible effect on post-synaptic parame-
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Figure5. The 5-HT, receptor agonist SR57227 increases the firing rate of TH-EGFP neurons

in a glutamate-dependent manner. A, Representative trace from a current-clamp experiment
showing the firing rate of a TH-EGFP neuron. Bath application of 10 v SR57227 significantly
increased the action potential firing rate in all six NTS TH-EGFP neurons tested. B, Average fold
increase in action potential firing rate in NTS-EGFP neurons compared to baseline (ACSF/con-
trol) following SR57227 (SR) treatment and wash (n = 6) and in the presence of the inotropic
glutamate antagonist 20 v NBQX, SR57227 +NBQX and following wash (in NBQX only) in NTS
TH-EGFP neurons (n = 6). Error bars indicate SEM; p << 0.01, one-way ANOVA.

ters. Interestingly, serotonin inhibited sEPSC frequency in the
presence of ondansetron, suggesting other 5-HT receptors in-
hibit glutamate release. 5-HT,,Rs are present in the NTS, and
their activation inhibits NTS neuronal discharge in vivo (Jeggo et
al., 2007). We found the 5-HT, R agonist, MK212, inhibits glu-
tamate inputs onto 50% of CA neurons. Low concentrations of
serotonin also inhibit inputs onto 50% of CA neurons, poten-
tially due to its higher affinity for 5-HT,Rs and 5-HT,,Rs than
for 5-HT3Rs (Olivier et al., 1997) and suggesting the intriguing
possibility of differential effects of serotonin depending on its
concentration and site of release.

5-HT;R activation decreases afferent activation of
NTS-TH-EGFP neurons

In contrast to their effect to increase spontaneous glutamate in-
puts, we found that 5-HT;R agonists decrease the amplitude of
ST-EPSCs in NTS-TH neurons. One explanation is that activa-
tion of 5-HT;Rs causes such a large increase in spontaneous glu-
tamate release that the readily releasable vesicle pool is depleted;
therefore, less glutamate is available during ST stimulation, and
the amplitude of the evoked EPSC is decreased. This mechanism
is proposed to underlie the effects of the VR1 agonist capsaicin,
which also increases sEPSC frequency while attenuating ST-
EPSC amplitude in NTS neurons (Doyle et al., 2002; Peters et al.,
2010). Multiple lines of evidence support this model. First,
5-HT;Rs are ligand-gated cation channels that are generally ex-
citatory and increase the probability of transmitter release
(Funahashi et al., 2004; Derkach et al., 1989; Machu, 2011). Sec-
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Figure 6.  The 5-HT, receptor agonist SR57227 (SR) (10 pm) significantly decreases the
amplitude of ST-EPSCs in TH-EGFP neurons. 4, Representative trace of two ST-stimulated EPSCs.
ST activation evoked monosynaptic EPSCs in TH-EGFP neurons (Jitter or SD of latency <200
usec). V,,,, —60mV. SR57227 significantly inhibited the amplitude of the ST stimulated EPSCs.
This effect was reversed aftera 10 min wash. B, A graph showing the average inhibition of effect
of ST-EPCS amplitude by SR57227 and following a 10 min wash in TH-EGFP neurons in control
conditions (left) and in the presence of the 5-HT, receptor antagonist ondansetron (ODT) (0.5
um). G, A graph showing the paired pulse ratio in ACSF following bath application of SR57227
and following a 10 min wash in control conditions (left) and in the presence of ondansetron (10
um, right) in TH-EGFP neurons (n = 72). Error bars indicate SEM; *p << 0.05, one-way ANOVA.

ond, activation of 5-HT;Rs depolarizes nodose ganglia neurons
(ST afferent cell bodies) (Higashi and Nishi, 1982), increases va-
gal afferent firing (Niijima, 1981; Blackshaw and Grundy, 1993),
and potentiates vagal activation of NTS neurons (Jeggo et al,
2005), suggesting they have excitatory effects on afferents. Third,
5-HT;R antagonists decrease both vagal activation of NTS neu-
rons (Jeggo et al., 2005) and the probability of glutamate release
from afferent terminals (Wan and Browning, 2008), consistent
with serotonin normally increasing glutamate release. Taken to-
gether with our findings, these data suggest that serotonin acti-
vates NTS-TH neurons, at least in part by releasing glutamate
from ST afferents. Interestingly, we see no effect of the 5-HT;R
antagonist in our horizontal slices, suggesting we have lost an
endogenous serotonin tone maintained in coronal slices that pre-
serve inputs from raphe nuclei (Wan and Browning, 2008).

Serotonin increases firing rate of NTS-TH neurons indirectly
by increasing excitatory glutamate inputs

Transmitters and hormones can dynamically adjust the firing
threshold of neurons by altering spontaneous glutamate inputs
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(Lee et al., 2010; Sutton et al., 2006), including NTS-TH neurons
(Cui et al., 2011). SR57227 increased the firing rate of NTS-TH
neurons in an AMPAR-dependent manner; suggesting that acti-
vation of 5-HT;Rs increases NTS-TH neuronal firing indirectly
by increasing glutamate tone. Furthermore, serotonin increases
glutamate release independently of afferent activation, indicating
that serotonin can activate NTS-TH neurons even in the absence
vagal feedback.

Serotonin preferentially effects catecholamine over
noncatecholamine neurons in the NTS

In contrast to the almost universal responsiveness of NTS-TH
neurons to serotonin, less than one-third of non-TH NTS neu-
rons respond to 5-HT5R agonists, and the size of the responses
was considerably smaller than that in catecholamine neurons.
This identifies TH neurons as an important subpopulation of
NTS neurons that are activated by serotonin. 5-HT;Rs in the NTS
contribute to the control of meal size (Hayes and Covasa, 2006b)
and modulate cardiovascular reflexes (Merahi et al., 1992; Sévoz-
Couche et al., 2003; Jeggo et al., 2005), suggesting that they have
an important action on homeostatic functions. NTS 5-HT;Rs are
also critical for the severe anorexia induced by ablation of NPY
neurons in the arcuate nucleus of the hypothalamus (ARC) (Wu
et al,, 2012). A glutamatergic projection from the NTS to the
parabrachial nucleus (PB) is similarly required for this anorexia.
As norepinephrine (NE) is released locally in the NTS (Al-
Khrasani et al., 2003; Arakawa et al., 1991), it is possible that
activation of 5-HT;Rs increases NE release, which then activates
NTS glutamate neurons projecting to the PB. Alternatively, some
of the NTS-TH neurons or the 30% of non-TH neurons that
respond to 5-HT;R activation could be glutamatergic. The degree
of the anorexia seen with activation of 5-HT;Rs in the NTS and
the use of 5-HT;R antagonists to treat nausea clinically (Machu,
2011) suggest that their effects on food intake may be protective
through eliciting nausea to non-nutritive/poisonous food.

Physiological implications for serotonin activating NTS-

TH neurons

NTS-CA neurons make extensive projections to many nuclei,
including the hypothalamus, nucleus accumbens, and the dor-
sal motor nucleus of the vagus nerve or DMNV (Cunningham
and Sawchenko, 1988; Wang et al., 1992; Rogers et al., 2003;
Reyes and Van Bockstaele, 2006; Rinaman, 2011). Our finding
that serotonin activates >90% of NTS-TH neurons predicts
that serotonin would cause an increase in catecholamine re-
lease at most of these sites. NTS-CA neurons participate in
neuronal circuits that widely influence homeostasis and be-
haviors including food intake, reward, anxiety, stress, and car-
diovascular reflexes (Lacroix and Rivest, 1997; Chan and
Sawchenko, 1998; Van Bockstaele et al., 2001; Laorden et al.,
2002; Krout et al., 2005). Therefore, our results elucidate a
mechanism by which serotonin could influence catechol-
amine modulation of these behaviors and functions.

Afferent terminals in the NTS that directly activate NTS-TH
neurons are responsive to several signals that modulate food in-
take and other homeostatic functions, including cholecystokinin
or CCK (Appleyard et al., 2007), ghrelin (Cui et al., 2011) and
opioids (Cui et al., 2012). This suggests a model in which the ST
afferent terminals themselves integrate humoral signals, resulting
in different amounts of glutamate release and activation of
NTS-TH neurons. Such an integrative capacity has already been
proposed for the vagus (Browning and Travagli, 2010; Dockray,
2009).

Cui, Roberts et al. @ Modulation of NTS Catecholamine Neurons by 5-HT

Endogenous source of serotonin

Serotonin-positive nerve terminals are found throughout the
medial NTS (Steinbush, 1981), including in close proximity with
NTS-CA neurons (Pickel et al., 1984). Neurons in caudal raphe
nuclei project to the NTS (Thor and Helke, 1989), and stimula-
tion of caudal raphe nuclei releases serotonin in the NTS (Brodin
et al., 1990; Weissheimer and Machado, 2007); furthermore, this
projection is required for the anorexia induced by ablation of
ARC-NPY (arcuate nucleus-neuropeptide Y) neurons (Wu et al.,
2012). Serotonin is synthesized in some afferents (Hery et al.,
1986), providing another source of serotonin in the NTS.
5-HT;Rs are synthesized in nodose ganglia neurons and traf-
ficked to terminals in both the NTS and the gut (Li, 2007); there-
fore, afferents modulated by serotonin centrally are also likely to
respond to serotonin in the gut. The gut is a major source of
serotonin, where it regulates GI function and increases vagal af-
ferent feedback (Cirillo et al., 2011). As we found, all NTS-TH
neurons receive direct inputs from serotonin-sensitive afferents;
another implication of our findings is that NTS-TH neurons are
potentially a downstream target of afferents that respond to GI
serotonin.

In summary, our data shows that serotonin, through activa-
tion of 5-HTj; receptors, strongly and broadly excite NTS-TH
neurons through a presynaptic mechanism to increase glutamate
release and action potential generation. This effect is relatively
selective to NTS-TH neurons and is independent of vagal afferent
activation. These results demonstrate a potential mechanism by
which serotonin could activate NTS-CA neurons to increase re-
lease of catecholamines at multiple target nuclei and influence
behaviors such as food intake, motivation, stress, and cardiovas-
cular function.
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