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High glucose increases action potential firing of catecholamine neurons in the
nucleus of the solitary tract by increasing spontaneous glutamate inputs
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Roberts BL, Zhu M, Zhao H, Dillon C, Appleyard SM. High
glucose increases action potential firing of catecholamine neurons in
the nucleus of the solitary tract by increasing spontaneous glutamate
inputs. Am J Physiol Regul Integr Comp Physiol 313: R229–R239,
2017. First published June 14, 2017; doi:10.1152/ajpregu.00413.
2016.—Glucose is a crucial substrate essential for cell survival and
function. Changes in glucose levels impact neuronal activity and
glucose deprivation increases feeding. Several brain regions have
been shown to respond to glucoprivation, including the nucleus of the
solitary tract (NTS) in the brain stem. The NTS is the primary site in
the brain that receives visceral afferent information from the gastro-
intestinal tract. The catecholaminergic (CA) subpopulation within the
NTS modulates many homeostatic functions including cardiovascular
reflexes, respiration, food intake, arousal, and stress. However, it is
not known if they respond to changes in glucose. Here we determined
whether NTS-CA neurons respond to changes in glucose concentra-
tion and the mechanism involved. We found that decreasing glucose
concentrations from 5 mM to 2 mM to 1 mM, significantly decreased
action potential firing in a cell-attached preparation, whereas increas-
ing it back to 5 mM increased the firing rate. This effect was
dependent on glutamate release from afferent terminals and required
presynaptic 5-HT3Rs. Decreasing the glucose concentration also de-
creased both basal and 5-HT3R agonist-induced increase in the fre-
quency of spontaneous glutamate inputs onto NTS-CA neurons. Low
glucose also blunted 5-HT-induced inward currents in nodose ganglia
neurons, which are the cell bodies of vagal afferents. The effect of low
glucose in both nodose ganglia cells and in NTS slices was mimicked
by the glucokinase inhibitor glucosamine. This study suggests that
NTS-CA neurons are glucosensing through a presynaptic mechanism
that is dependent on vagal glutamate release, 5-HT3R activity, and
glucokinase.
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GLUCOSE IS ESSENTIAL FOR CELL SURVIVAL and plays a critical role
in metabolic processes. Multiple brain regions contain glucose-
sensing neurons, including the hypothalamus and hindbrain (9,
30–33, 66). The nucleus of the solitary tract (NTS) is one brain
region identified as responsive to glucoprivation, as when the
glucose metabolism inhibitor 5TG is injected into the NTS, it
elicits a feeding response (4, 13, 32). The NTS impacts mul-
tiple homeostatic functions and is the primary site by which
visceral afferent information concerning cardiovascular, respi-
ratory, and gastrointestinal systems enters the brain (22, 25, 40,
53, 55, 58). This provides a mechanism by which changes in
glucose could impact these homeostatic responses; however,

the neuronal phenotype that responds to changes in glucose,
and the cellular mechanisms involved, are not well understood.

The A2/C2 group of catecholamine (CA) neurons is located
in the NTS and is directly activated by incoming visceral
afferents of the solitary tract (ST) (1). They are also activated
by signals that inhibit food intake and inhibited by compounds
that stimulate food intake, suggesting they lie downstream of a
reflex satiety pathway (1, 10–12, 21, 26, 38, 44, 68, 69).
Furthermore, optogenetic and chemogenetic activation of these
neurons inhibits food intake, with prolonged activation reduc-
ing body weight (50). NTS-CA neurons form extensive pro-
jections, including to the hypothalamus, amygdala, nucleus ac-
cumbens, ventral tegmental area, parabrachial nucleus (PBN), and
other brain stem nuclei (3, 42, 43, 50, 54, 61, 63, 67), making
them ideally suited to send visceral afferent information in a
coordinated manner to multiple brain regions. NTS-CA neu-
rons express norepinephrine, epinephrine, and glutamate and
the release of these neurotransmitters at these target nuclei can
affect many behaviors, including stress, arousal, anxiety, re-
ward, food intake, and cardiovascular function (8, 22, 25, 28,
40, 44, 50, 58–60).

Glucose plays a critical role in metabolic processes, and
hindbrain catecholaminergic neurons are involved in hypo-
glycemia-induced food intake and other homeostatic func-
tions modulated by glucose concentrations (18, 47, 52).
Strong evidence exists suggesting that A1/C1 catecholamine
neurons of the ventral lateral medulla (VLM) are glucosens-
ing, but the role of the A2/C2 neurons is less clear and it is
not known whether they respond to changes in glucose
concentration (32, 48).

The goal of these studies was to determine whether NTS-CA
neuronal activity is altered by changes in glucose concentra-
tion. We report here that the majority of NTS-CA neurons are
glucose excitatory and that glucose has presynaptic effects on
visceral afferent terminals to alter 5-HT-induced glutamate
release. Furthermore, inhibition of glucokinase mimics the
effects of glucose on 5-HT signaling, suggesting that glucoki-
nase is involved in the glucosensing mechanism.

MATERIALS AND METHODS

NTS slices. All animal procedures were conducted with the ap-
proval of the Animal Care and Use Committees at Washington State
University (Pullman, WA) and in accordance with the United States
Public Health Service Policy on Humane Care and Use of Laboratory
Animals (PHS Policy) and the National Institutes of Health Guide for
the Care and Use of Laboratory Animals (NIH). Eight to sixteen-
week-old mice (both males and females) were used for these studies.
No difference was noted between male and female mice for the
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parameters studied and so the data were pooled. The hindbrain was
removed and placed for 1 min in cold (0–4°C) artificial cerebral
spinal fluid (aCSF). The cutting plane was aligned vertically, section-
ing caudal to rostral when mounted in a vibrating microtome (Lieva
VT-1000S). Coronal slices (250 �m thick) from the TH-EGFP mice
(Matsushita et al. 2002) were cut with a sapphire knife (Delaware
Diamond Knives) and preserved the raphe nucleus and caudal NTS.
This allowed us to conserve serotonergic inputs into the NTS. Slices
were submerged in a perfusion chamber and all recording were
performed at 31–35°C.

Whole cell recordings were made using an external aCSF bath
solution containing (in mM): 125 NaCl, 3 KCl, 1.2 KH2PO4, 1.2
MgSO4, NaHCO3, 10, 5, 2, or 1 dextrose, and 2 CaCl2, bubbled with
95% O2-5% CO2; 30–34°C; pH � 7.3, adjusted to 300–310 mosmol
using sucrose. Internal recording solution contained (in mM) 10 NaCl,
125 KCl, 11 EGTA, 1 CaCl2, 2 MgCl2, and 10 HEPES, pH � 7.3,
295–300 mosmol. External bath solution was used in patch electrodes
for cell-attached recordings. Neurons were recorded from NTS within
200 �m rostral or caudal from obex and medial to the ST. Patch
electrodes, 3–5 M�, were guided to neurons using both fluorescence
(FITC) and differential interference contrast (DIC) optics (Olympus
BX51). Voltage clamp and current clamp recordings were made with
an Axopatch 700B and pClamp10 software (Axon Instruments). Only
neurons not exceeding holding currents of 100 pA at holding potential
(VH) � �60 mV for the 10 min control period (input resistance �
120 M�) were studied further. Current clamp recordings were made
at resting membrane potentials, and current injections were not used
to hold the membrane at set potentials. Only neurons with an access
resistance less than 20 M� were used for analysis. All membrane
potentials reported were corrected for junction potential (~14 mV).
All drugs were obtained from Tocris Cookson or Sigma Aldrich.

Cell cultures. Nodose ganglion neurons were dissected from male
and female mice (6–16 wk) and cultured similar to previously re-
ported protocols (24). Cells were maintained in Neurobasal A media
(Invitrogen). Nodose cells were recorded on days 1–2 at room tem-
perature. Locally administered drugs were applied to nodose cells for

2 s with a pressure of 2–3 psi using a picospritzer III (Parker). Input
resistance ranged from 0.9 to 18.5 M�. The response rate of neurons
to 5-HT was highly variable, ranging from 10 to 70% of the neurons
tested, depending on the culture.

Statistics. All data are presented as means with errors bars as SE.
Differences in drug effects were tested by repeated measured
ANOVA, using Tukey’s post hoc analysis unless otherwise noted.
Differences were considered statistically significant for P values
�0.05 unless otherwise stated (Sigmaplot 11.2).

Mice. TH-EGFP mice were on a C57Bl/6J background. Transgenic
mice were housed on a 12-h light/12-h dark cycle at room temperature
in the Department of Integrative Physiology and Neuroscience animal
vivarium. Mouse chow and water were provided ad libitum. Geno-
typing and breeding of mice were as described previously (1). All
animal procedures were conducted with the approval of the Institu-
tional Animal Care and Use Co mMittee at WSU in accordance with
the US Public Health Service Policy on Humane Care and Use of
Laboratory Animals (PHS Policy) and the National Institute of Health
Guide for the Care and Use of Laboratory Animals (NIH).

RESULTS

Low glucose decreases action potential firing of TH-EGFP
neurons in NTS. TH-EGFP neurons were easily identified and
visualized for recordings (Fig. 1A). We have previously dem-
onstrated a greater than 88% colocalization of EGFP with TH
in the medial and caudal NTS of these mice (1, 10) To
determine whether changes in glucose concentration alter ac-
tion potential (AP) firing rates in NTS TH-EGFP neurons, we
used cell attached recordings to preserve the internal conditions
of the neurons and measured AP firing rate in different glucose
concentrations. Decreasing the aCSF glucose concentration
from 5 mM (1.87 � 0.74 Hz) to 2 mM (1.23 � 0.45 Hz) to 1
mM (0.43 � 0.27 Hz) gradually decreased the action potential
firing rate in TH-EGFP neurons (n � 7). This effect was
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Fig. 1. Low glucose decreases action potential (AP) firing
of nucleus of the solitary tract (NTS) TH-EGFP neurons
in the NTS. A: visualization of NTS coronal brain slice
taken from a TH-EGFP mouse using differential interfer-
ence contrast (DIC) (top left) and fluorescence (bottom
left), scale bar, 1 mM. CC: central canal; ST: solitary
tract. Visualization of patched neuron using DIC (top
right) and patched neuron in fluorescence (bottom right).
Scale bar, 10 �m. B: average AP firing rate from a
cell-attached recording of a TH-EGFP neuron in lowered
glucose concentrations binned into 60-s periods. C: aver-
age fold change of cell-attached AP firing rate in lowered
glucose concentrations from 5 mM (1.0 � 0.7 intrinsic
variance), 2 mM (0.8 � 0.2), 1 mM (0.3 � 0.2), and then
increased to 2 mM (0.3 � 0.3) and 5 mM (1.2 � 0.3; n �
7). D: average fold change of cell-attached AP firing rate
in lowered glucose concentrations with a synaptic cock-
tail starting in 5 mM (1.0 � 0.2 intrinsic variance), to 5
mM	Cocktail (1.1 � 0.1) to 2 mM	Cocktail (1.1 � 0.1)
to 1 mM	Cocktail (0.9 � 0.1), and then raised to 2
mM	Cocktail (1.3 � 0.2) to 5 mM	Cocktail (0.8 �
0.1). Error bars indicate SE; *P � 0.05 denotes a signif-
icant change in AP firing rate compared with 5 mM
glucose, one-way ANOVA.
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reversible, as action potential firing rate increased again when
glucose concentrations were returned to 5 mM glucose
(2.85 � 0.31 Hz; Fig. 1, B and C).

Effect of glucose on NTS TH-EGFP neurons is presynaptic.
To determine whether the effects of glucose were direct or
indirect (e.g., pre- or postsynaptic), we tested the effect of
glucose after blocking GABAA, ionotropic glutamate [
-am-
ino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/
kainate and N-methyl-D-aspartate (NMDA) and glycine recep-
tors using GABAzine (0.5 �M), 2,3-dihydroxy-6-nitro-7-sul-
famoyl-benzo[f]quinoxaline-2,3-dione (NBQX, 50 �M), (2R)-
amino-5-phosphonopentanoate (AP-5, 50 �M), and strychnine
(1 �M), respectively (Cocktail). Using a cell-attached prepa-
ration, we again recorded the AP firing rate of NTS TH-EGFP
neurons, at a starting glucose concentration of 5 mM (6.45 �
1.05 Hz), to 5 mM	Cocktail (5.92 � 1.94 Hz) to 2
mM	Cocktail (6.32 � 2.17 Hz), to 1 mM	Cocktail (4.87 �
1.5 Hz), and then raised to 2 mM	Cocktail (6.81 � 2.35 Hz)
to 5 mM	Cocktail (3.71 � 1.34 Hz; Fig. 1D). In contrast to
the control experiment described above, in the presence of
GABAA, AMPA/kainate, NMDA, and glycine receptor antag-
onists, lowering glucose concentration no longer decreased AP
firing rate, suggesting glucose actions are presynaptic and
dependent on the release of GABA, glutamate, and/or glycine.
Interestingly, the combination of blocking both excitatory
(glutamate) and inhibitory (GABA and glycine) inputs did not
significantly alter basal AP firing rate (n � 5; one-way
ANOVA).

Effect of glucose on NTS TH-EGFP neurons is mediated by
changes in presynaptic glutamate release. We have previously
shown that the firing rate of NTS TH-EGFP neurons is depen-
dent on glutamate inputs (10). As glucose has been shown to
alter both the excitability of vagal afferents and nodose gan-
glion cells (17) and the release of glutamate from presynaptic
terminals (64, 65), we tested whether the effects of altering
glucose concentration were dependent on presynaptic gluta-
mate release. Using a cell-attached preparation, we again
recorded the AP firing rate of NTS TH-EGFP neurons at a
starting glucose concentration of 5 mM (1.97 � 1.06 Hz) to 2
mM (1.4 � 1.09 Hz) to 1 mM (1.03 � 0.86 Hz), verifying that
the cells were glucose excitatory. We then bath applied the
non-NMDA ionotropic glutamate receptor antagonist NBQX
(50 �M) before raising the glucose concentration back from 1
mM (0.99 � 0.81 Hz) to 2 mM (0.06 � 0.04 Hz) and finally 5
mM (0.03 � 0.01 Hz; n � 6). In contrast to the control
experiments (Fig. 1, B and C), AP firing rate did not return
after raising glucose concentrations in the presence of NBQX,
suggesting that the effects of glucose depends on glutamate
inputs. The effects of NBQX were not rapidly washed out in 5
mM glucose (0.02 � 0.01 Hz; Fig. 2, A and B), likely due to
the high affinity of NBQX for AMPA receptor.

Effect of glucose on NTS TH-EGFP neurons requires
5-HT3Rs. The 5-HT3R is a potent modulator of presynaptic
glutamate release in the NTS, and the size of 5-HT3R-mediated
5-HT currents are dependent on glucose concentration (2, 12,
65). To test whether glucose effects are dependent on 5-HT3R
function we lowered the glucose concentration from 5 mM
(1.17 � 0.28 Hz) to 2 mM (0.76 � 0.27 Hz) to 1 mM
(0.18Hz � 0.06 Hz; n � 6/8) and then bath applied the 5-HT3R
antagonist ondansetron (ODT, 0.5 �M) and raised the glucose
concentration from 1 mM (0.44 � 0.32 Hz), 2 mM (0.02 �

0.02 Hz), to 5 mM (0.05 � 0.04 Hz) in the presence of ODT.
ODT blocked the return of AP firing after increasing glucose
concentrations suggesting that glucose actions on NTS TH-
EGFP neurons require 5-HT3Rs. After ODT was washed out
for 15 min in 5 mM glucose concentration, the firing rate of the
neurons began to increase again (0.25 � 0.11 Hz; ~21% of
control. Fig. 2, C and D).

5-HT3R-stimulated increase in sEPSC frequency in NTS TH-
EGFP-positive neurons is blunted in low glucose concentrations.
As we had determined that the effects of glucose were indirect
we next used whole cell patch-clamp techniques in the coronal
brain slice to determine whether glucose affects basal 5-HT3R
modulation of spontaneous excitatory postsynaptic current
(sEPSC) frequency in NTS TH-EGFP neurons as this has been
demonstrated to be a potential mechanism for changes in
glucose to alter glutamate inputs onto unidentified NTS neu-
rons (65).

We have previously shown that 5-HT increases sEPSC
frequency in horizontal slices, but that there was no effect of
the 5-HT antagonist alone in that orientation, suggesting that
we had severed the serotonergic inputs (12). In contrast, 5-HT
has been shown to provide a basal tone in coronal slices to
increase sEPSCs frequency (65), suggesting that the serotoner-
gic inputs are intact in the coronal slice. To confirm that we
also see an endogenous basal 5-HT tone in our coronal slices
we applied ODT (0.5�M) in 10 mM glucose; sEPSC frequency
decreased from 4.29 � 1.01 Hz during the control period to
3.27 � 0.63 Hz in the presence of ODT. After the wash, sEPSC
frequency returned to 4.30 � 0.08 Hz (Fig. 3, A and B). In the
presence of ODT, sEPSC amplitude did not change (�33.2 �
6.23 pA) compared with control (�34.91 � 6.15 pA; P �
0.05, one-way ANOVA; Fig. 3C).

To determine whether the effect of 5-HT on the sEPSC
frequency of NTS TH-EGFP neurons is dependent on glucose
concentration, we used whole cell patch clamp techniques to
record from NTS TH-EGFP neurons. In 5 mM glucose, bath
application of SR57227 (30 �M), a 5-HT3R agonist, increased
sEPSC frequency from 7.14 � 1.75 Hz to 18.42 � 4.6 Hz (Fig.
3, D and E). After a 10-min wash, sEPSC frequency returned
to control (15.58 � 5.63 Hz). In 2 mM glucose, bath applica-
tion of SR57227 did not change sEPSC frequency (5 mM:
5.5 � 1.62 Hz, 2 mM: 6.76 � 1.98 Hz, 2 mM	SR:
13.5 � 6.29 Hz, 2 mM: 10.15 � 4.19, 5 mM: 8.02 � 4.03 Hz;
Fig. 3E). sEPSC amplitude did not change after application of
SR57227 in 5 mM (Control: �31.8 � 3.8 pA; SR: �30.4 �
4.4 pA; Wash: �27.7 � 3.2 pA) or 2 mM glucose concentra-
tions (Control: �35.48 � 5.38 pA; SR: �33.77 � 3.22 pA;
Wash: �34.5 � 5.25 pA; P � 0.05, one-way ANOVA; Fig. 3F).

Low glucose blunts 5-HT inward current in dissociated
nodose ganglion neurons. To determine the mechanism by
which glucose acts we performed whole cell patch-clamp
recordings in dissociated nodose ganglion neurons, which are
the cell bodies of the presynaptic afferents providing inputs
onto the TH-EGFP neurons in our NTS slices. We started by
testing the effect of 5-HT on the holding current of nodose
ganglion neurons. We locally applied 5-HT from a glass
pipette with a 2-s puff from a picospritzer. To determine the
effective 5-HT concentration, we tested 5-HT at two concen-
trations, 100 �M and 300 �M. The 100 �M concentration of
5-HT induced a large inward current (�312.54 � 132.73 pA;
n � 5) with it being further increased at 300 �M (�1063.77 �
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275.02 pA; n � 11; Fig. 4B). For 100 �M and 300 �M 5-HT
concentrations, decay time was 10.92 � 2.69 s and 43.04 �
9.19 s, respectively (data not shown). To control for cell size
and capacitance differences, we also calculated the current
density induced by both 100 �M 5-HT as �5.63 � 2.88 pA/pF
[membrane capacitance (Cm): 62.52 � 3.9 pF] and 300 �M
5-HT as �23.68 � 7.0 pA/pF (Cm: 52.44 � 3.38 pF). We used

100 �M 5-HT for the remainder of our nodose recordings as
this produced an optimal response.

We next tested 100 �M 5-HT in 10 mM, 5 mM, and 2 mM
glucose concentrations. In 10 mM glucose, 5-HT induced a
large inward current (�585.88 � 131.17 pA, Fig. 4A), which
was significantly larger than at 2 mM glucose (�15.25 � 4.42
pA; Fig. 4A) where 5-HT-induced inward currents were min-
imal. The effect was intermediate at 5 mM (trace not shown,
�159.5 � 55.26 pA). Current density was �8.91 � 2.03
pA/pF (Cm: 66.49 � 3.0 pF; n � 9) at 10 mM, �4.04 � 1.22
pA/pF (Cm: 38.72 � 2.93 pF; n � 6) at 5 mM, and �0.3 �
0.07 pA/pF (Cm: 48.6 � 6.03 pF; n � 8) at 2 mM glucose
concentrations (Fig. 4C). Decay times at 10, 5, and 2 mM were
33.2 � 10.95 s, 10.3 � 1.82 s, and 6.36 � 1.91 s, respectively
(Fig. 4D).

To determine whether glucose had nonselective effects on
all ligand gated ion channels in nodose neurons, we also tested
the response of the TrpV1 ligand capsaicin (CAP). In contrast
to 5-HT, altering glucose concentration did not significantly
change CAP-induced inward currents (100 �M) at 10 mM
glucose (�1605.8 � 450.37 pA; CD: �30.31 � 8.29 pA/pF;
Cm: 51.64 � 6.93 pF; n � 6) and 2 mM glucose (�1187.26 �
352.65 pA; CD: �20.54 � 4.61 pA/pF; Cm: 51.55 � 8.24 pF;
n � 8; Fig. 4E).

Glucokinase inhibition blunts 5-HT-induced inward current
in dissociated nodose ganglia. Glucokinase has been shown to
be required for the effects of glucose on nodose neuronal
excitability (17). To determine whether it is also required for
glucose effects on 5-HT3R activity, we tested the glucokinase
inhibitors; if glucokinase is required, inhibiting it should mimic
the effect of lowering glucose concentrations. We tested the
effects of the inhibitors in 10 mM glucose concentration, as the
5-HT response is largest at this concentration.

Pretreating neurons with glucosamine (GSM, 100 �M) sig-
nificantly decreased the amplitude of 5-HT-induced inward
currents (�333.48 � 186.42 pA; n � 6) compared with control
(�1237.98 � 565.79 pA; n � 6) as fold change (one-way
ANOVA, Tukey post hoc, P � 0.01; Fig. 5, A and B). Fold
change of current density was significantly less in GSM
(�8.56 � 4.46 pA/pF) compared with control (�35.32 �
18.79 pA/pF; Fig. 5, A and B). These data suggest that glucose
actions on 5-HT signaling are dependent on glucokinase ac-
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Fig. 2. Effect of glucose on NTS TH-EGFP neurons is mediated by presynaptic
glutamate release and the 5-HT3R. A: average AP firing rate from a represen-
tative cell-attached recording of a TH-EGFP neuron in lowered glucose
concentrations after application of the non-N-methyl-D-aspartate (NMDA)
ionotropic glutamate receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-
benzo[f]quinoxaline-2,3-dione (NBQX, 50 �M), binned into 60-s periods. B:
average fold change of cell-attached AP firing rate in lowered glucose con-
centrations from 5 mM (1.0 � 0.5 intrinsic variance), 2 mM (0.5 � 0.2) 1 mM
(0.4 � 0.2), and after application of NBQX (50 �M) in 1 mM (0.3 � 0.2), 2
mM (0.1 � 0.05), 5 mM (0.03 � 0.02) followed by a 5 mM wash
(0.02 � 0.01; n � 6). C: AP firing rate from a representative cell-attached
recording of a TH-EGFP neuron in lowered glucose concentrations with
ondansetron (ODT; 0.5 �M) treatment, binned into 60-s periods. D: average
fold change of cell-attached AP firing rate in lowered glucose concentrations
from 5 mM (1.0 � 0.3 intrinsic variance), 2 mM (0.4 � 0.1), 1 mM
(0.13 � 0.04), and after application of ODT (0.5 �M) in 1 mM (0.08 � 0.02),
2 mM (0.05 � 0.02), and 5 mM (0.1 � 0.05) followed by a 5 mM wash
(0.3 � 0.1; n � 6/8). Error bars indicate SE; *P � 0.05 denotes a significant
change compared with baseline (aCSF/control), one-way ANOVA.

R232 HIGH GLUCOSE INCREASES ACTIVITY OF NTS-CA NEURONS

AJP-Regul Integr Comp Physiol • doi:10.1152/ajpregu.00413.2016 • www.ajpregu.org
Downloaded from journals.physiology.org/journal/ajpregu (071.234.239.077) on March 15, 2023.



tivity. As a control we again tested CAP, a TRPV1 agonist, in
10 mM glucose before (�20.45 � 9.52 pA/pF; �1091.27 �
572.0 pA, n � 6) and after pretreatment of GSM (�19.8 �
8.76 pA/pF; �1042.62 � 527.26 pA n � 6; Fig. 5B) and saw
no significant change. The decay time was also not sig-
nificantly different (CAP in control: 36.25 � 14.48 s, n � 6;
CAP in GSM: 31.53 � 12.93 s, n � 6 cells from 3 cultures;
Fig. 5D).

To confirm this finding we also tested another glucokinase
inhibitor, alloxan. Pretreating neurons with alloxan (400 �M)
for 10 min significantly decreased the amplitude of 5-HT-
induced inward currents (�57.06 � 24.05 pA; n � 5) com-
pared with control (�749.14 � 211.24 pA; n � 5) as fold
change (one-way ANOVA, Tukey post hoc, P � 0.01). 5-HT
current density was significantly less with pretreatment of alloxan
(�1.07 � 0.52 pA/pF) compared with control (�13.34 � 3.63
pA/pF; Fig. 5B). Decay time was also significantly different
between control (37.39 � 15.5 s) and GSM (15.65 � 6.4 s) or
alloxan (17.37 � 8.44 s) pretreatment preceding local appli-
cation of 5-HT (Fig. 5D).

KATP channels, but not AMPK, influence 5-HT currents in
dissociated nodose ganglion neurons. We next determined
whether the effects of glucose involved AMP kinase (AMPK)
as AMPK activity is positively correlated with the AMP-to-
ATP ratio. As AMPK is activated by low glucose, if AMPK
were required, activating it should decrease 5-HT-induced
currents. Bath application of the AMPK activator 5-aminoimi-
dazole-4-carboxamide ribonucleotide (AICAR, 1 mM) onto
dissociated nodose ganglion neurons did not alter 5-HT-in-
duced inward currents (�331.22 � 111.17 pA) when com-
pared with control (�280.44 � 86.75 pA; n � 5). There was
also no change in 5-HT current density before (�6.73 � 1.37
pA/pF; Cm: 55.63 � 3.61 pF; n � 5) or after AICAR applica-
tion (�7.86 � 1.74 pA/pF; Fig. 5C) or decay time (control:
45.76 � 10.73 s and AICAR: 42.44 � 9.7 s; n � 5 cells from
3 cultures; P � 0.05, one-way ANOVA). This suggests that the
effect of glucose concentration on 5-HT-induced inward cur-
rents is independent of AMPK.

Next, we determined whether ATP-sensitive potassium
channel (KATP) channels were involved in the glucose-sensing
mechanism. KATP channels are open when glucose concentra-
tions, and thus intracellular ATP levels, are low. The KATP

channel activator diazoxide (300 �M), which would be ex-
pected to mimic low glucose, significantly decreased the am-
plitude of the inward current induced by 5-HT by ~40%
(Control: �1217.1 � 680.48 pA; diazoxide: �810.92 �
560.93 pA; 0.54 � 0.08-fold control, n � 5 from 3 cultures;
P � 0.05, one-way ANOVA; Fig. 5C).

Glucokinase inhibition blunts 5-HT effects on sEPSCs in
NTS TH-EGFP-positive neurons. The glucokinase inhibitor
GSM blunted the effect of 5-HT-induced currents in nodose
ganglion neurons. We next tested whether this effect was also
observed in the brain slice (Fig. 5, A and B). In 5 mM glucose,
5-HT (30 �M) increased control sEPSC frequency from
4.6 � 1.37 Hz to 15.27 � 4.59 Hz (4.2 � 1.5-fold control; n �
15). GSM treatment (300 �M; 0.7 � 0.2-fold; 3.09 � 1.17 Hz;
n � 7) decreased control sEPSCs frequency (4.97 � 1.92 Hz;
n � 7). In the presence of GSM, 5-HT did not increase sEPSCs
frequency (3.7 � 1.4-fold; 7.38 � 2.68 Hz; n � 7) when nor-
malized to control (P � 0.05, one-way ANOVA; data not
shown). sEPSC amplitude was not altered after 5-HT applica-
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tion with (�34.91 � 7.74 pA vs. �27.31 � 5.1 pA, respec-
tively; n � 7) or without GSM pretreatment (�31.23 � 3.8 pA
vs. �36.86 � 4.41 pA, respectively, data not shown).

While there was a trend for GSM to inhibit 5-HT effects on
sEPSC frequency in 5 mM glucose, which is apparent on the
scatter plot, it did not reach statistical significance (Fig. 6A). To
increase our ability to detect an inhibition we recorded 5-HT
responses in 10 mM glucose as they are larger. In 10 mM
glucose 5-HT (30 �M) increased control sEPSC frequency
from 4.18 � 1.21 Hz to 16.64 � 5.43 Hz (n � 8). GSM
treatment (300 �M; 2.43 � 0.52 Hz) had no effect on control
sEPSCs frequency (2.97 � 1.92 Hz; n � 8), but significantly
attenuated the 5-HT-induced increase sEPSCs frequency
(7.38 � 2.68 Hz; n � 8) when normalized to control (Fig. 6, D
and E). sEPSC amplitude was not altered after 5-HT applica-
tion with (�24.26 � 2.79 pA vs. �31.51 � 7.38 pA, respec-
tively) or without GSM pretreatment (�23.93 � 3.53 pA vs.
�25.31 � 3.96 pA, respectively; Fig. 6F). 5-HT application
compared with 5-HT application after pretreating was signifi-
cantly decreased in 10 mM glucose (P � 0.05, one-way
ANOVA). A comparison of GSM effects in 5 mM versus 10
mM glucose concentrations is shown in Fig. 6, A and B.

DISCUSSION

Catecholamine neurons in the NTS are implicated in a broad
number of homeostatic functions including the control of food
intake, reward, stress, and cardiovascular reflexes (22, 23, 25,
38, 44, 45, 50, 56, 58, 59, 69). Changes in glucose concentra-
tion can have a large impact on neuronal activity (27, 64) and
also affect homeostatic functions (15). Hindbrain catechol-
amine neurons are critical for glucoprivic responses and A1/C1
catecholamine neurons respond to changes in glucose (46).
However, it was not known whether changes in glucose con-

centration alter the activity of NTS-CA neurons. Here we
report four key new findings. First, the majority of NTS-CA
neurons fire more action potentials in high glucose (5 mM)
concentrations than in low glucose (1 mM) concentrations.
Second, the effect of glucose on action potential firing rate is
dependent on glutamate inputs. Third, the effect of glucose on
glutamate release requires presynaptic 5-HT3R. Fourth, inhi-
bition of glucokinase mimics the effect of low glucose to
inhibit both 5-HT3R-stimulated currents in nodose neurons and
glutamate release in the NTS.

Majority of NTS TH-EGFP neurons are excited in higher
glucose concentrations. Here we show for the first time that
glucose concentration has a direct relationship with action
potential firing in NTS-CA neurons. The finding that 86% of
NTS-CA neurons are excited by high glucose shows a remark-
ably homogenous response. In comparison, a survey of all NTS
neurons (of unidentified phenotype) showed that 35% were
excited and 21% inhibited by higher glucose concentrations,
with the rest being nonresponsive (36). The response of
GABAergic NTS neurons to changes in glucose concentration
were also very heterogeneous, with 40% being glucose excited
(GE), 33% glucose inhibited (GI), and 27% nonresponsive (7).
Our results therefore identify NTS-CA neurons as a unique
population of neurons predominately excited in high glucose
concentrations. The fact that changes in glucose increase the
firing rate of almost all of these neurons provides a mechanism
for the coordinated modulation of the majority of downstream
targets of NTS-CA neurons, which include multiple brain
regions (3, 42, 43, 54, 61, 63, 67). It is possible that the 14%
of CA neurons that decrease their firing in higher glucose, or
are nonresponsive, represent a specific subpopulation that un-
derlie a discrete function and project to different brain regions
than glucose-excitatory CA neurons.
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Our finding that NTS-CA neurons decrease their firing rate
in lower glucose concentrations is also consistent with the fact
that glucoprivation does not increase fos-ir in the majority of
A2/C2 neurons, in contrast to the large activation of A1/C1
neurons (48). If A2/C2 neurons are glucose excitatory (albeit
indirectly), their activity would be predicted to decrease in a
glucoprivic state, and therefore c-fos is unlikely to be activated
in these neurons.

Glucose excites NTS-CA neurons by increasing glutamate
inputs onto NTS TH-EGFP-positive neurons through the
5-HT3R. Our results show that the effect of glucose concen-
tration on NTS-CA neuronal firing is dependent on glutamate
inputs as it is blocked by the ionotropic AMPA/kainate gluta-
mate receptor antagonist NBQX. This suggests that the effects
of glucose are indirect on glutamate terminals in the NTS, with
higher concentrations of glucose leading to a higher probability
of glutamate release. Consistent with this model we found that
spontaneous glutamate inputs onto NTS-CA neurons are also
dependent on glucose concentration, with glucose inputs being
increased in higher glucose. This finding is consistent with
previous reports that glucose concentration impacts the fre-
quency of glutamate inputs onto unidentified rat NTS neurons
(64) and that the firing rate of NTS-CA neurons is dependent
on spontaneous glutamate inputs (10, 12).

The effect of glucose on both NTS-CA neuronal firing rate
and spontaneous glutamate inputs is also dependent on
5-HT3Rs as it was blocked by the 5-HT3R antagonist ODT.
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The size of the effect of the 5-HT3R agonist SR57227 on
sEPSC frequency in NTS-CA neurons was also positively
correlated with aCSF glucose concentrations. This suggests
that increasing glucose concentrations increases serotonin
5-HT3R signaling in vagal afferent terminals to increase glu-
tamate release onto NTS-CA neurons. Consistent with this we
show that the size of the 5-HT3R-mediated current in mouse
vagal afferent nodose neurons is dependent on glucose con-
centration, as has been reported previously for the rat (2).
Browning and her colleagues showed that this is likely due to
changes in the surface expression of 5-HT3Rs, as surface
expression is dependent on glucose concentration (2, 65). Here
we extend those findings to the mouse and identify NTS-CA
neurons as a critical downstream population of neurons that are
excited by glucose in a 5-HT3R-dependent manner.

NTS neurons receive a basal serotonergic tone onto 5-HT3Rs
that contributes to the normal frequency of release of glutamate
as ODT application decreases sEPSC frequency in the general
population of NTS neurons (65). This effect is positively
correlated with aCSF glucose concentrations. Our findings
suggest that this basal serotonin tone also exists on afferent
inputs specifically onto NTS-CA neurons. One implication of
this result is that it suggests that serotonergic terminals release
5-HT onto vagal afferent terminals to control glutamate acti-
vation of NTS-CA neurons independently of vagal afferent
firing. Furthermore, as this tone is lost in lower glucose
concentrations it suggests a mechanism by which changes in
glucose can modulate the firing rate of NTS-CA neurons, and
presumably the catecholaminergic tone at downstream target
nuclei, again independently of changes in vagal afferent firing.
Interestingly, we do not see this basal serotonin tone in a
horizontal slice preparation, which preserves the connections
in the rostral caudal orientation, but doesn’t retain the dorsal
ventral connections (12). This suggests that the basal tone of
serotonin might originate from the raphe obscurus, which lies
ventral to the NTS, is present in the coronal, but not the
horizontal slice, and is an endogenous source of 5-HT produc-
ing neurons located ventral to the NTS (41). Interestingly,
stimulation of the raphe obscurus produces significant 5-HT
release into the dorsal vagal complex (DVC; i.e., the NTS and
dorsal motor nucleus of the vagus), in fed, but not fasted rats
(37, 65). In addition, high-fat diet blunts the ability of glucose
to increase 5-HT3R responses (62). Therefore, different energy
states could potentially influence excitation of this pathway by
altering both the size of serotonin release and activation of
5-HT3R at the level of the NTS.

Glucokinase activity contributes to presynaptic 5-HT signaling.
Here we report that the reduction in 5-HT3R function in vagal
afferents seen in low glucose is mimicked by two different
glucokinase inhibitors. Glucokinase is the enzyme responsible
for converting glucose to glucose-6-phosphate and acts as a
glucose sensor, shifting cellular function and metabolic pro-
cesses based on fluctuating glucose concentrations (29). Glu-
cokinase has been shown to respond to the glucose concentra-
tions we use here in other brain regions (4, 13, 16, 17). It is
present in nodose ganglia neurons and knockdown of its
expression by short hairpin RNAs abolishes glucose excitation
of nodose neurons (17). It is also required for glucose sensing
by GABAergic neurons in the NTS (7) and its expression
decreases following chronic hyperglysemia induced by strep-
tozotocin-induced diabetes (20). Taken together these results

suggest that glucokinase provides one mechanism by which
vagal afferents “sense” changes in glucose concentration to
alter serotonin receptor function. Critically, inhibition of glu-
cokinase did not alter the current mediated by the vallinoid
receptor VR1; suggesting the effect is selective to the 5-HT3R
and it is not a global effect of the drugs on excitability.

The glucokinase inhibitor GSM also blunted 5-HT3R-medi-
ated glutamate release in the coronal brain slice, suggesting
that glucokinase affects 5-HT3R signaling in vagal afferent
terminals to modulate glutamate release onto NTS-CA neu-
rons. This effect was most robust at high concentrations of
glucose (10 mM), likely because 5-HT3R expression is already
decreased in lower glucose concentrations, making it hard to
measure a further reduction by glucokinase inhibition.

KATP channel influences 5-HT currents in vagal afferents.
KATP channels, which are inhibited by high levels of intracel-
lular ATP, are also found in the NTS (34, 70) and in nodose
ganglia neurons (17). High concentrations of glucose increase
intracellular ATP (6) and this has been shown to inhibit KATP

channels to increase neuronal firing rate in some neurons (14,
17). We found that the KATP channel activator diazoxide,
which mimics low glucose concentrations and activates KATP

channels, significantly decreased the 5-HT-induced inward
currents even in 10 mM glucose concentrations. This suggests
that KATP channels also play a role in modulating 5-HT
currents in vagal afferents. KATP channels have previously
been shown to be important for glucose-induced firing of
gastric afferents (16, 17) and for mediating the GE effect in an
unidentified subpopulation of caudal NTS neurons (14) as well
as the GE response of medial NTS GABA neurons (7). Our
data suggests that at least some of these GE neurons could be
NTS-CA neurons that respond to changes in glucose concen-
tration.

Our predicted model is that in high glucose, a combination
of activation of glucokinase and inhibition of KATP channels
depolarizes vagal afferent terminals and increases glutamate

Fig. 7. A model of how different glucose concentrations impact NTS-CA
neuronal activity. Our findings suggest that changes in glucose concentration
alter presynaptic vagal afferent glutamate release onto NTS-CA neurons
through modulation of the 5-HT3R. In high glucose concentrations (bottom),
5-HT3R activity increases glutamate release onto NTS-CA neurons, which
increases action potential firing in these neurons. Low glucose concentrations
(top) decrease 5-HT3R activity and blunt the effects of 5-HT on NTS-CA
neuron activity. Glucokinase (GK) appears to be important for the effects of
changes in glucose.
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release onto NTS-CA neurons. In contrast, we did not find
evidence that AMPK, whose activity is also regulated by
changes in the AMP-to-ATP ratio in neurons, plays a role
in the expression of the 5-HT3R on nodose ganglion neu-
rons. This is contrary to other neuronal populations, includ-
ing in the hypothalamus, hippocampus, and hindbrain,
where AMPK has been shown to be critical (5, 39, 51).
However, this finding is consistent with the finding that
glucoprivation does not activate AMPK in A2/C2 neurons,
in contrast to the A1/C1 neurons (33).

Physiological implications. NTS-CA neurons have been
widely implicated in the control of homeostatic functions,
including the control of food intake. The finding that altera-
tions in glucose concentrations impacts NTS-CA neuronal
activity identifies one potential mechanism by which changes
in glucose levels can modulate feeding behavior (4, 46, 49, 52).
Brain glucose levels don’t fluctuate as much as blood glucose;
with brain glucose concentrations reported to range from ~0.2
mM in a state of hypoglycemia to ~4 mM in a state of
hyperglycemia, with normoglycemic levels at ~2.5 mM in rats
(51, 57). In contrast, blood glucose concentrations in rats can
range from ~3 mM to ~16 mM (51, 57). For our brain slice
studies we see changes in glutamate inputs and NTS-CA
neuronal activity with changes in glucose concentrations from
5 mM to 2 mM, within these physiological ranges. In addition,
increasing the glucose concentration to 10 mM further in-
creases the size of the 5-HT3R response (as was also shown by
Refs. 2 and 64); suggesting that if the NTS sees higher glucose
concentrations the neurons will further increase their firing
rate. Our data suggests that hyperglycemia will increase the
effect of serotonin to increase NTS-CA neuronal firing rate
through increased glutamate inputs, presumably leading to
increased transmitter release at their downstream targets. In
contrast, during low-to-normal glucose conditions this drive
will be blunted and the activity (firing rate) of these neurons is
likely to be lower. The exact concentration of glucose that
NTS-CA neurons are exposed to in vivo is not known. The
NTS lies directly below the area postrema, a circumventricular
organ that lies outside of the blood brain barrier (BBB) and
portions of the medial/commissural NTS have been reported to
contain some fenestrated capillaries (19, 35). If NTS-CA neu-
rons are exposed to glucose concentrations closer to blood
glucose levels, then there is likely a serotonergic drive that
increases glutamate inputs onto these neurons, even during
normal glucose concentrations. However, parts of the NTS are
not exposed to the BBB and likely see glucose concentrations
closer to those in other brain regions. The nodose ganglia,
which contain the cell bodies of vagal afferents, lie outside the
BBB and are therefore exposed to blood glucose concentra-
tions It is possible that prolonged high blood glucose could
influence the longer-term expression of 5-HT3Rs on vagal
afferents.

Perspectives and Significance

In summary, we show that the firing rate of NTS-CA
neurons is impacted by changes in glucose concentration, with
their firing rate being higher in higher glucose concentrations.
We show that this is an indirect (presynaptic) mechanism
through potentiation of 5-HT3R activation of vagal afferent
terminals to increase glutamate release. Additionally, we show

that glucose effects on 5-HT3R function are dependent on
glucokinase activity and KATP channels and are independent of
AMP kinase. Blood and brain glucose concentrations are
altered in hypo- and hyperglycemia. Given the crucial role of
NTS-CA neurons in the control of food intake, stress re-
sponses, and motivational behaviors, these studies identify a
potential mechanism by which high glucose concentrations
could influence these behaviors (Fig. 7). Thus they contribute
to our understanding of how glucose can impact neuronal
circuits involved in the control of food intake and the mecha-
nisms by which physiological glucose levels can influence
neuronal activity.
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